Sec 4 Maths

Exam papers with worked solutions

SET B PAPER 1 Question

Compiled by

THE MATHS CAFE

S4 Maths Set B Paper 1 Question www.pmc.sg

1. The gradient of a curve, at the point (x, y) is 3-4x. Given that the maximum value of the curve is -2, find the equation of the curve. [4]

The variables x and y are related by the equation $y = \ln(\sqrt{3 + x^2})$. At the instant when x = 1, x is decreasing at the rate of 2 units per second, find the rate of change of y.

3. Find the value of h and of k for which $x^2 + hx + k$ is a factor of $2x^3 + 3x^2 + 4x - 3$. [4]

S4 Maths Set B Paper 1 Question www,pmc.sg

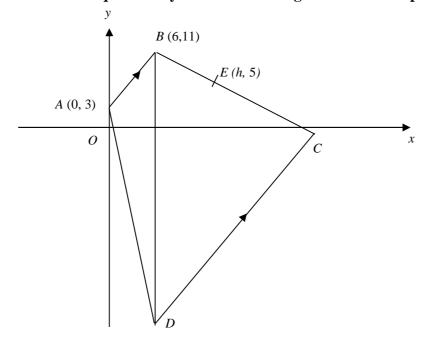
4. If $y = x^3 - 3x^2 + 6x + 1$, show that y is an increasing function for all real values of x. Hence, find the minimum value of the gradient of this function. [5]

5. Differentiate $\frac{x^2 + 1}{2x - 3}$ with respect to x, and hence evaluate $\int_0^4 \frac{x^2 - 3x}{(2x - 3)^2} dx$. [5]

- **6.** A curve has the equation $y = 2\cos\left(2x + \frac{\pi}{4}\right)$. Find
 - (i) an expression for the gradient of the curve [2]
 - (ii) the x-coordinate(s) of the point(s) on the curve at which the gradient of the normal is -0.5 where $0 < x < \frac{\pi}{2}$ radians. [4]

S4 Maths Set B Paper 1 Question www,pmc.sg

- 7. (a) Without using a calculator, evaluate 14^x , given that $2^{3-x} \times 7^{2x-1} = 7^{3x+2}$ [3]
 - (b) Solve the equation $12 \log_8(x+2) \log_{\sqrt{2}}(x+6) = 2$ [4]


- **8.** A quadratic equation is given by $h(x^2 + 4x) = x h$, where h is a constant.
 - (i) Find the range of values of h such that the quadratic equation has real roots.

[4]

(ii) Hence, or otherwise, find the range of values of h for which

$$h(x^2 + 4x) > x - h$$
 for all real values of x. [2]

9. Solutions to this question by accurate drawing will not be accepted.

The diagram which is not drawn to scale, shows a trapezium ABCD in which AB is parallel to DC. The coordinates of points A and B are (0, 3) and (6, 11) respectively. D is a point that makes BD parallel to the y-axis. E(h, 5), where h is positive, is a point on BC such that AB = BE and BE : EC = 2 : 3.

(i) Show that the value of h is 14. [2]

Find

(ii) the coordinates of
$$C$$
, [2]

(iii) the equation of
$$DC$$
, [2]

(iv) the coordinates of
$$D$$
. [2]

- **10.** A curve is defined by $y = 3\cos\left(\frac{x}{2}\right) 1$, where $0 \le x \le 4\pi$.
 - (i) State the period of the curve. [1]
 - (ii) Write down the minimum value of the curve. [1]
 - (iii) Determine the x-coordinate of the points where the curve crosses the x axis [3]
 - (iv) Sketch the graph of $y = \left| 3\cos\left(\frac{x}{2}\right) 1 \right|$ for $0 \le x \le 4\pi$. [3]
 - (v) Sketch, on the same diagram for $0^{\circ} \le x \le 4\pi$, the graph of $y = \frac{3x}{2\pi} 1$. Hence state the number of roots of the equation $2\pi \left| 3\cos\left(\frac{x}{2}\right) - 1 \right| = 3x - 2\pi$. [2]

S4 Maths Set B Paper 1 Question www,pmc.sg

- 11. (a) Find all the angles between 0° and 180° which satisfy the equation $\cos x \sin 2x \cos 3x = 0$ [4]
 - (b) Solve for 0 < y < 5, the equation $\sin y \cos y = \cos^2 y \sin^2 y$. [3]
 - (c) Given that $\frac{\sin(A-B)}{\sin(A+B)} = \frac{7}{3}$, show that $2 \cot B + 5 \cot A = 0$ [3]

12. Answer the whole of this question on a sheet of graph paper.

The population P, in millions, of a country was recorded in the month of January for various years and the results are shown below.

Year	1990	1995	2000	2005	2010
P	122.4	163.2	276.2	278.9	350.0

It is known that $P = 100 + at^n$, where t is the time measured in **years from January 1985** and a and n are constants. An error has been made in recording one of the values of P.

- Using the vertical axis for $\lg(P-100)$ and the horizontal axis for $\lg t$, plot $\lg(P-100)$ against $\lg t$ and obtain a straight line graph. [3]
- (ii) Use your graph to estimate
 - (a) the correct reading of P for which an error has been made, [2]
 - (b) the value of a and of n, [4]
 - (c) the year in which the population first reached 200 million. [2]