ALTERNATING CURRENT

Challenging MCQ questions by The Physics Cafe

Compiled and selected by The Physics Cafe

1 Fig. 5.1 below shows an alternating voltage supply given by $V = V_0 \cos \left(\frac{1}{2} \right)$ connected to four diodes numbered 1, 2, 3 and 4 and a resistor R.

Fig 5.1

(i) On the axes given below, sketch and label the voltage-time graph of the resistor for at least two cycles when all four diodes are in use. Clearly label the period of each cycle. [2]

If diode 4 is removed, leaving a break in the circuit, sketch and label the new voltage-time graph of the resistor for at least two cycles. [2]

(b)	A power station produces 20.0 MW of power for delivery to a town some distance
	away. This power is generated at 32.0 kV and then stepped up to 240 kV using an
	ideal transformer before transmission. The total resistance of the transmission
	cables is 5.0 Ω .
	(i) State the turns ratio of the secondary coil to the primary coil in this transformer.

cables is 5.0 Ω .		
(i)	State the turns ratio of the secondary coil to the primary coil in this transformer.	
	turns ratio = [1]	
(ii)	Explain why it is more economical to step up to 240 kV before transmitting	
	electrical power to the town. Justify your answer in terms of power loss in the	
	transmission cables.	
	F01	
	[3]	

Ans (a) (i)

[M1] for correct shape

V = 0 when t = 0

sharp edges at T/4

at least 2 cycles should be drawn

[A1] for correct label of Vo and T

(ii)

[M1] for correct shape (ecf is given if student show understanding that only half of the cycle exists and the graph can only be in either the positive or negative axis).

[A1] for correct label of Vo and T

(b) (i) Turns ratio
$$\frac{N_s}{N_p} = \frac{240}{32} = 15:2$$
 [A1]

Since power in the primary coil = power in secondary coil At 240 kV,

$$P_{in} = P_{out} = 20 \times 10^6 \text{ W}$$

$$I_{out} \times V_{out} = 20 \times 10^6 \text{ W}$$

$$I_{out} = \frac{20 \times 10^6}{240 \times 10^3} = 83.3 \,\mathrm{A}$$

$$P_{cables} = I^2 R = 83.3^2 \times 5.0 = 34.7 \text{ kW}$$

[M1]

[M1]

At 32.0 kV, $I_{out} = \frac{20 \times 10^6}{32.0 \times 10^3} = 625 \text{ A}$ $P_{loss} = I^2 R = 625^2 \times 5.0 = 1.95 \text{ MW}$

Since less power is lost transmitting at 240 kV, it is more economical to [A1] transmit at 240 kV.

2

(a) An electric kettle, designed for travellers, can be used with different voltages. It is rated 700 W for a 240 V alternating supply. Determine its power output when used on a 120 V direct supply.

[1]

(b) A simple transformer connected with a circuit is illustrated in Fig. 5.1

(i) An ideal transformer has **300 turns** on the primary coil and **8100 turns** on the secondary coil. The root-mean-square input voltage to the primary coil is **9.0 V** of frequency **50 Hz**. Calculate the peak voltage in the secondary coil.

[1]

[2]

(ii) A cathode-ray oscilloscope (c.r.o) Y-plates connected across the load resistor R and the trace in **Fig. 5.2** is seen. Calculate the Y-plate sensitivity of the c.r.o.

5 | Page

(iii) The diode is now removed from the circuit in Fig. 5.1. On Fig. 5.3, sketch a graph which shows how the power of the load resistor, R, of resistance 5.0 Ω varies with time. [3]

Fig. 5.3

Using Power, P=V²/R Ans a.

$$R = V^2/P = 240^2/700 = 82.3 \Omega$$

New power dissipated P' = V^2/R = $120^2/82.3 = 175 W$

Using Np/Ns = Vp/Vs bi.

300/8100 = 9/Vs

Vs = 243 V (rms)

Peak voltage, Vo = 243 x $\sqrt{2}$ = 343 V

1.5 cm represents 343 V bii

1 cm represents 229 V

Hence the sensitivity is 229 Vcm⁻¹

5biii

Power =
$$Vo^2/R = 343^2/5.0$$

= 23.5kW

3 The primary coil of an ideal transformer has 100 turns and is connected to a 15V rootmean-square (r.m.s.) supply at 50 Hz. The secondary coil has 1600 turns and is connected to a resistor of resistance 120 Ω as shown in Fig. 5.1

Fig. 5.1

(a) Determine the r.m.s. value of the current in the resistor.

(b) The variation with time t of the current I in the resistor is given by $I = I_o \sin \omega t$.

On Fig. 5.2, sketch the variation with time *t* of the power *P* dissipated in the resistor from t = 0 to t = 0.020 s.

Fig. 5.2

(c) On Fig. 5.3, sketch the variation of the net amount of charge Q which flowed past a point in the resistor from t=0 to $t=0.020\,\mathrm{s}$. (Numerical values for the charge are not expected.)

Fig. 5.3

[1]

Ans

(a)
$$\frac{V_s}{V_p} = \frac{N_s}{N_p}$$

 $\frac{V_s}{15} = \frac{1600}{100}$

Since
$$R = \frac{V_s}{I_s}$$
,

 $V_{\rm s} = 240 \, {\rm V}$

$$I_s = \frac{240}{120} = 2.0 \,\mathrm{A}$$

(b)
$$P_o = \frac{V_o^2}{R}$$

$$P_o = \frac{\left(\sqrt{2}V_s\right)^2}{R}$$

$$P_o = \frac{\left(\sqrt{2} \times 240\right)^2}{120}$$

$$P_o = 960 \text{ W}$$

(c)

