MEASUREMENT

Challenging MCQ questions by The Physics Cafe

Compiled and selected by The Physics Cafe

- 1 You are provided with 2 types of resistors, one type of value **300** Ω with a percentage uncertainty of 10% and another type of value 330 Ω with a percentage uncertainty of **5%**.
 - (a) If two of the 300 Ω resistors are placed in series, work out the value of their total resistance with its associated uncertainty.

Total resistance =..... \pm Ω [2]

(b) If two of the **330** Ω resistors are now connected in parallel, work out both the *maximum* and *minimum* resistance of this combination.

Maximum value = $\dots \Omega$ Minimum value = $\dots \Omega$ [3]

Ans	(a)	R = $300 \pm 10\% = 300 \pm 30 \Omega$ Total resistance = $300 \pm 300 = 600 \Omega$ Δ (R+R) = $30 \pm 30 = 60 \Omega$	M1
		Total resistance = $600 \pm 60 \Omega$	A1
	(b)	R = 330 Ω hence ΔR = 5% of 330 Ω = 16.5 Ω Hence maximum value for a single resistor is (330 + 16.5) Ω = 346.5 Ω Hence minimum value for a single resistor is (330 - 16.5) Ω = 313.5 Ω	M2
		Since combined resistance, $R_c = R/2$ Maximum value for $R_c = 346.5/2 = 173.25\Omega$ Minimum value for $R_c = 313.5/2 = 156.75\Omega$	۸1
		Rounding off to the nearest ohm, Maximum value = 173 Ω Minimum value = 157 Ω	AI

(a) The travelling microscope may be read to ± 0.1 mm. Discuss whether it would be possible to use this apparatus to detect a variation of 1% in the diameter of the tube between two points, 25 mm apart.

[2]

(b) To reduce random error, we can take the average of several readings of a quantity. Explain why taking average of a few readings can reduce random error.

[2]

(c) 'Velocity is a vector quantity, and kinetic energy of a body is equal to half its mass times the square of its velocity. Hence, kinetic energy must also be a vector.' Comment on the correctness of this statement.

 $0.01 \times 25 = 0.25 \text{mm} = 0.3 \text{mm}$ Ans а

b

С

Hence, not possible as the instrument cannot read up to the 2nd dp.

- Taking average of a few readings could reduce the scatter of the readings from one another. Hence, random error is reduced since random error is a measure of the scatter of the data points.
- The statement is incorrect. The kinetic energy of a body is equal to half its mass times the square of the **value of** its velocity. Since the calculation consists of the multiplication of scalar values, the result is a scalar value and not a vector.

50 copper rods are arranged side by side closely without any gaps between them as shown in Fig 1.1. A metre rule is used to measure *L*, the total length as shown, and recorded as (60.5 ± 0.1) cm.

(a) Calculate the diameter of a single rod, together with its uncertainty.

diameter = cm [2]

(b) Given that the resistivity of copper is 1.7 x 10⁻⁸ Ω m and the average length of each rod is measured by the same metre rule to be 14.2 cm, calculate the percentage uncertainty of the resistance of a single copper rod.

percentage uncertainty =% [3]

www.ThePhysicsCafe.com | www.pmc.sg | www.TheMathsCafe.com

	(c)	Explain what is meant by random errors, and identify a source of random error which		
		can occur in the measurement of the diameter of a single copper rod.		
			[2]	
Ans	(a)	Diameter of one rod = L/50 = 1.210 cm	C1	
		Uncertainty in diameter, $\Delta d = \Delta L / 60 = 0.0017$ cm = 0.002 cm (1 SF)		
		Hence, d = 1.210 ± 0.002 cm	A1	
	(b)	(b) $R = \frac{\rho L}{A} = \frac{\rho L}{\left(\frac{\pi d^2}{4}\right)} = \frac{4\rho L}{\pi d^2}$ $\frac{\Delta R}{R} = \frac{\Delta L}{L} + 2\left(\frac{\Delta d}{d}\right)$	C1	
		Percentage uncertainty $\frac{\Delta R}{R} \times 100 = \left[\frac{\Delta L}{L} + 2\left(\frac{\Delta d}{d}\right)\right] 100$	C1	
		$= \left[\frac{0.1}{14.2} + 2\left(\frac{0.002}{1.210}\right)\right]100 = 1.03\%$	A1	
	(c)	Random errors are errors with different magnitudes and signs in repeated measurements, occurring without any fixed pattern.	B1	
		Non-uniformity in diameter of the rod along its length	B1	